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laboratory using the linear accelerator as a pulsed source 
of neutrons. 
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1. INTRODUCTION 

IN our attempts to understand elementary particles 
and nuclear forces, for several decades we have been 

making an assumption that is not forced on us either by 
the principles of relativity theory or by the requirements 
of quantum theory. This assumption ultimately has to 
do with the shape of an elementary particle, but in the 
relativistic quantum theory of a point-particle, a con
cept such as shape does not enter. It is therefore neces
sary to examine the classical limit of relativistic field 
theory—the relativistic classical mechanics of a spinning 
particle—where the motion of the spin of even a point-
particle can be described only when we know its mo
ments of inertia about axes along, and perpendicular to, 
its spin axis. In the absence of any information about 
the structure of the particles it is necessary to treat the 
particle as a point with, however, a finite amount of 
spin-angular momentum associated with it. This re
quires nonzero moments of inertia if the angular 
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velocity is to remain finite, and these may be prescribed 
as parameters which are a measure of the "shape" of 
the particle. 

In the corresponding quantum theory we have ignored 
these questions, arguing that the angular velocity is not 
an observable and that it is sufficient to associate a spin-
angular momentum with the particle, and look for 
equations of motion which lead to irreducible representa
tions of the Lorentz group for different spin values. 
These equations, in particular those of Dirac and 
Kemmer, are also based on the assumption that the spin 
and rest mass of a particle are always constant 
parameters. 

In view of the well-established correspondence be
tween classical and quantum physics it seems surprising 
that dynamical variables and parameters such as angu
lar velocity and moment of inertia, so important in 
classical mechanics, play no role in quantum theory. It 
has, therefore, seemed reasonable to conduct a rein
vestigation of the relation between the Dirac equation 
and the classical equations of motion to see at what 
point the correspondence was lost. For many years it has 
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been recognized that the classical equations of motion 
reflect, in an imperfect way, the essential properties that 
make the Dirac equation such an accurate description 
of nature. In particular, pair production zitterbewegung, 
and the gyromagnetic ratio of the electron all appear in 
the classical theory if we do not inhibit the free exchange 
of angular momentum between spin and orbital modes, 
as some incomplete statements of the classical equations 
are prone to do. 

Further investigation has revealed that the operator 
which corresponds to the angular velocity G> in the 
classical theory does in fact have its counterpart in the 
Dirac theory. I t is nothing but a constant times the 
Pauli spin operator <r, and the equation J = |ftcr for the 
spin has as its classical limit J = / G > , where / is the 
moment of inertia about the spin axis. Quantum me
chanically, there seems to be no need to break J up into 
factors of dimension / and G>, and we have become 
accustomed to thinking of the Pauli spin operator as the 
spin itself, apart from the factor \fo. Angular velocity 
and angular momentum are thereby assumed to be 
parallel to each other, and indistinguishable apart from 
a constant factor. 

The nonrelativistic classical equations of motion of 
course do not require that the angular momentum and 
angular velocity of a body should be parallel to each 
other, unless the body is rotating about a principal axis. 
The relativistic classical equations of a point-particle 
with spin lead to the surprising result that the angular 
momentum and angular velocity are not required to be 
parallel even if the particle is rotating around a prin
cipal axis. The reason for this is essentially the same as 
the reason why the ordinary momentum and velocity of 
a spinning particle are not required to be parallel in 
classical theory, and are represented by quite different 
operators in the Dirac theory. A distribution of matter 
rotating about a principal axis will acquire products of 
inertia from relativistic effects if the axis itself rotates, 
and in the limit of a point-particle at rest this leads to 
the relation between spin-angular momentum J and 
angular velocity <a 

J - / c o + (K/c) (G)X (da/dt)), (1.1) 

K being a parameter proportional to the moment of 
inertia of the particle about any axis at right angles to G> 
(assuming axial symmetry). In fact, for a free particle, 
Eq. (1.1) has a solution in which o> precesses around the 
constant vector J with angular velocity o>' = (c/Koo2)J 
according to Euler's equations 

/ / ( r f w / & ) + « x s = 0 , (1.2) 

where I' = Ku>2/c is the moment of inertia about axes 
orthogonal to G>. 

For v?^0, the corresponding relativistic classical equa

tions of motion for a symmetrical top are1 

J^v=^(v^pp—vvp^) = I(bliV--K(o)fl(rcb(rV—o)vao)(rfl)y , ^ 

M=(K/2Ic)^J,v, 

where 
vltpll+Mc = 0, coM„tf„=0 (1.4) 

and 
M=m— (K/Icjwpr&nv, (1.5) 

where m is a constant. Thus, even for v = 0 , there are 
extra contributions to the mass and spin given by 

8M= - (K/2c*)<»' (d2<*/dt2), 8J= (K/c)<*Xdu>/dt, 

which, for the motion described by Eq. (1.2) give 

J = J OO~T~JQ> 
where 

5Af=(/o/ft)w0 , « , = 2w0c
2/ft, (1.6) 

and Jo, is the component of Jo> in the direction of J. 
If we set i £=0 , the classical equations reduce to 

VnPn+?nc = 0, 7M„=icoM„, coM^„=0 
or (1.7) 

TF=v.p+wc 2 ( l - /3 2 ) 1 / 2 , J = /<o. 

I t follows as a consequence of the equations of motion, 
that m is a constant of the motion. These equations are 
to be compared with the Dirac or Kemmer equations, in 
which m is also a constant. 

(iefipa+mc)^ = 0 , J y.v — — ifie^, 
where 

( \- * - * ^ ' 

and a is a constant. [The Dirac equation is given by the 
choice 

6M=TM> a = i , / „„=— litiJuv, (1.9) 

and the Kemmer equation by the choice 

€M=/3M, a = l , J^=—ififlp,, (1.10) 

where YM, J8M are the Dirac and Kemmer operators, re
spectively, and Y/H^YM/Y*)* ftiF= (ft»,ft,).] From (1.8), 
it follows that 

As shown in Ref. 2, the basic wave equation which 
we adopt for a free particle is suggested by the classical 
equations (1.4) and (1.5). 

(ie^+Mc^O, (1.11) 

1 H. J. Bhabha and H. C. Corben, Proc. Roy. Soc. (London) 
A178, 273 (1941); S. Shanmugadhasan, Can. J. Phys. 30, 226 
(1952). 

2 1 . H. C. Corben, Proc. Natl. Acad. Sci. U. S. 48, 1559 (1962); 
II. H. C. Corben, Proc. Natl. Acad. Sci. U. S. 48, 1746 (1962); 
III. H. C. Corben, Nuovo Cimento 28, 202 (1963); IV. H. C. 
Corben, Phys. Rev. Letters 10, 555 (1963); V. H. C. Corben, Phys. 
Rev. 131, 2219 (1963). 
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TABLE I. B, S, 73, / and mass values for solutions of Eq. (1.17). For n, S° states the values of S and 13 are for the limit in which mass 
differences are neglected. The theoretical values for the mass levels are based on the choice m = 1328 MeV=8w0. Antiparticles of all those 
listed appear when the signs of both e and 74774 are reversed. Each state occurs twice, with the same values of 775, B, S, 13, / but with 
T = ± l . 

Represen
tation 
of ft 

1X1 

5X5 

10X10 

74*74 

- 1 

1 

- 1 

6 

1 

- 1 

- 1 

V5 

1 

— 1 
— 1 
— 1 

— 1 

— 1 

— 1 

B 

1 

— 1 
— 1 

— 1 
— 1 
— 1 
— 1 

S 

- 2 

- 2 
- 2 

0 
0 

0 
- 2 

0 
0 
0 
0 
0 

h 
1 
2 

— 1 

1 
2 1 
2 
i 
1 
2 
1 
2 

i 
1 
2 

1 1 
2 
A 
2 

Mass 
(units m) 

1 

1 
^ + ( l - 2 a - 2 a 2 ) 1 / 2 

a - ( l - 2 a - 2 a 2 ) 1 / 2 

- ( l + o ) 

(l+2a)1/2 

a+( l -2a -2a 2 ) i / 2 
( l -4a)1 /2 

- ( l - 4 a ) 1 / 2 
a - ( l - 2 a - 2 a 2 ) i / 2 

- (1+20) 1 ' 2 

- ( 1 + a ) 

Mass 
(MeV) 

1328 

1328 
1292 

- 9 5 9 
-1494 

1485 
1292 
939 

- 9 3 9 
- 9 5 9 

-1485 
-1494 

Spin 
/ 
1 
2 

1 
2 

* 
* 
f 

1 
2 
1 
2 
* 
\, 1 
2 
3 
2 
1 
2 

Particle 

E~ 

v-
H° 
n 
#13*° 

^ 1 3 * + 

H° 
* 
P 
n 
Nn*~ 
AT13*0 

Mass 
(MeV) 
experi
mental 

1321 

1321 
1316 

-940 
-1517 

1517 
1316 
938 

- 9 3 8 
-940 

-1517 
-1517 

where3 

M=m—moeuJ,'\a (1.12) 

The X^r satisfy among themselves the same commuta
tion relations as do the eM„: 

(Xp^X*) ~ ^v$v<r—\$n<T , 

(1.13) 

so that 

In addition, we postulate that 

(*WX,) = 0 , (1.14) 
so that 

(fy^Xff,.) = 0 , (€M,X„<r) = 0 , (ejuy,X(r) = 0. 

The spin operator of the particle described by Eq. 
(1.11) is now 

Jp.v~ — ̂ ( e ^ + X ^ ) , (LIS) 

since it follows from (1.11) that the components of 

J np~T~%fiPp %vPfx 

are constants of the motion. 
Apart from the superficial similarity between Eqs. 

(1.11), (1.12), and^the classical equations (1.4), (1.5), 
we note that, if ifiX is defined as (X,H), where H is the 
invariant operator on the left-hand side of Eq. (1.11), it 
follows that 

Juv— —iieppy— eypn) 

= —ifi€(iV-\-2m^(eli<T\<TV—ev<T\<Tli), (1.16) 

M= — (imo/fyXnyJur. 

3 Readers unimpressed by classical limits and the correspond
ence principle may think of the extra term in Eq. (1.12) as an 
interaction that we are "guessing/' a term which splits the 
otherwise degenerate mass levels. 

The correspondence between these quantum equations 
of motion and the classical equations (1.3) is established 
by writing 

loin?— • 

Independently of the choice (1.9) or (1.10) for the ê  
we may choose 

X M = Y / , . . « = i > X ^ — \ihyj 
or 

X M = / a=l, XM,= —i*ft,/, 

where the 7 / , ft/ commute with the y^ ft. We are 
therefore led to the four following possibilities: two 
equations for fermions (with ê  X/^ft, or with 
e ^ f t , X/i=7/x) and two equations for bosons (with 
eM=7M, X/i=7M

/, or with 6^=ft, XM=ft/). Each of the 
fermion equations 

[iynpn+mc—itnocy^Pn J ^ = 0 , (1.17) 

[ift^+w'c- J Wcft^ ,>=0, (1.18) 

describes states of spin / M ? = — ^ [ i 7 / ^ + i f t J , i»e., 
J=&[!<*+£] (with 723, Jzi9 ^12=J, 723, 73i, 7i2=2i<r, 
/523, fti, #12=^2). The spin of a particle state described 
by either (1.17) or (1.18) is therefore \ (for or-2S = 0 or 
- 2 ) o r f (for or-2=1). 

Similarly the two boson equations obtained from 
(1.11) and (1.12) are 

[iyfipti+in"c—i^mo,cyllPylt/'}p = 0, (1.19) 

[ i fc ,A,+w'"c- W e f t A / > = 0 , (1.20) 

the first describing particles of spin 

J=P(<HV), 

file:///ihyj
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i.e., spin zero or unity, and the second describing parti
cles of spin 

J=*(2S+S0, 
i.e., spin 0, 1, 2. 

In the following sections we examine in turn the 
properties of the solutions of these four equations in the 
rest systems of the various particle states. 

2. BARYONS OF STRANGENESS 0, ±2 

The solutions of Eq. (1.17) in the rest system have 
been given in Ref. 2 (III and V) and are reproduced here 
in Table I and Fig. 1. Equation (1.17) describes particle 
states of spin \ or f, and, as will become apparent, states 
of isospin \* The six lowest states known to fall into 
these categories are4 p, n, E°, S~, iV"̂ *4", Nn*° and the 
six states given by Eq. (1.17) are identified with these, 
together with their antiparticles. 

The conserved probability density four-vector is 
given by 

s^ic^ywMfrt (2.1) 

(t7M=2/5M
2—l) so that the probability density \f/*r}4& is 

not positive definite and may be normalized to =1=1. 

r = U*n*pdV=±l. (2.2) 

For any particular state the sign of r is automatically 
determined. The independently conserved charge-cur
rent density may be taken to be 

where eo is the proton charge and €==fcl. The choice of 
the sign of e is discussed below. Neutral states are 
characterized by 775= — 1, and charged states by 775= + 1 , 
the total charge in units of eo being given by 

Q = — f jdV=te [t*rn(X+m)il,dV. (2.4) 
eoc J J 

The quantity 

B= foytfdV (2.5) 

is found to be positive for positive-energy states and 
negative for negative-energy states. In the rest system, 
the various eigenstates may be characterized by the 
eigenvalues ± 1 of the operator 74774. Hence, for such 
states with wave functions normalized according to 
Eq. (2.2), we have B=zkl> the sign being that of the 
rest energy. Thus, B [Eq. (2.5)] may be interpreted as 
the baryon number. 

4 The notation is that of M. Roos, Rev. Mod. Phys. 35, 314 
(1963). 

(1,0,-1/2,3/2) N*3° 

FIG. 1. Positive mass levels of Eq. (1.17) in units mc2 and as 
functions oia—m^/m. The quantum numbers represent B, S, 13, J, 
respectively. The vertical dashed line indicates the value of a 
used in Table I. 

We now define 

Y=B+S=h [rit-K+Viil+MdV, (2.6) 

h=h I ^ 5 - 1 + 1 7 4 ( 1 + 1 7 5 ) } ^ , (2.7) 

Q=UB+S)+IZ. (2.8) 

Further, from (2.6), (2.7) 

U=h(B+S)m, (2.9) 

where 775 now represents the eigenvalue of 775 for the 
state yp. Thus, IZ=^(B+S) for charged states and 
—%(B-{-S) for neutral states, in agreement with the 
usual assignments. 

For charged states (175=+1) we have 

Q=B+S=eU*r)4dV 

= [$*(eYm)$dV (2.10) 

= XB, 

for eigenstates of the operator €74774, which has eigen
values X = ± l . Thus, charged states X=l characterizes 
states of charge Q=Y=B, with B = ± 1, whereas X = — 1 
characterizes states of S=—2B, Q=Y=—B. We there-

^=^(^€^^4174(1+175)7^^ > (2-3) so that, from Eq. (2.4), 
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fore see how strangeness appears as a natural conse
quence of the basic equation (1.17). 

In the classical Dirac theory of the electron, the 
electric charge is given by 

H WdV, 

where e= — 1 for positive energy states and e= + l for 
negative energy states. In the present theory, however, 
the choice of the sign of e is more subtle. Each repre
sentation of the ftp gives rise to a set of states for one 
sign of 74)74 and to the corresponding antiparticle states 
for the opposite sign of 74)74. In addition, each state 
occurs in two different representations of the £M. We 
therefore choose the sign of e(e= + l) for the one posi
tive energy state (74=1, 774= — 1, 075=+ 1) that occurs 
in the 1X1 representation of the 0M. The spin of this 
state is §, and since X = — 1 it follows immediately from 
the definitions (2.4), (2.5), (2.6), and (2.7) that Q= -1, 
B— + 1,S= — 2 ,7 3= — h Since these quantum numbers 
characterize the E~~ state, we therefore choose the mass 
m of this state to be approximately the mass of the E~ 
particle. This same state also occurs in the 5X5 repre
sentation of the j8M, with 74)74= + !, 775=+ 1. In order 
that this should describe the same particle, it is then 
necessary to choose €= — 1. This choice automatically 
causes not only Q, but also B, S, and J3 to assume the 
same values for E~ as before. However, in this repre
sentation there are three other states, all neutral, with 
masses 1292 MeV, - 9 5 9 MeV (spin J) , and - 1 4 9 4 
MeV (spin f) for the choice ntoc2—166 MeV. Since e has 
been fixed as — 1 in this representation, it follows that, 
with 775= — 1 , S+B= — 1 for all three states, the ap
proximate value becoming an equality when mass 
differences are neglected (see below). Since B=l, — 1 , 
— 1 for these three states respectively, it follows that 
5 = — 2 for the first state and zero for the other two. The 
isospin component 73 then assumes values appropriate 
to the particles E°, n, Nn*° with which these states are 
identified. 

These same three states now appear in the 10X10 
representation with 74)74= — !. We must, therefore, 
choose €= — 1 in this case so that the quantum numbers 
of each state will be the same as before. However, this 
representation also includes the charged states at ± 1485 
MeV (spin f) and ±939 MeV (spin £). Since e has been 
already fixed as equal to — 1 in this representation, it 
follows that X= + l , so that S=0yQ=B = 2I^ for these 
states. These states of positive baryon numbers there
fore have a positive charge, and those of negative baryon 
numbers a negative charge. In addition, the spins, 
masses, isospin, and strangeness of these states are 
appropriate for the description of the proton and the 
charged component of the Nu*+ resonance, together 
with their antiparticles. States which appear as a 
charged particle together with its neutral counterpart in 
the same representation are characterized by r = l 

[Eq. (2.2)] and states which appear with the other 
member of the isospin doublet in a different repre
sentation are characterized by r = — 1. 

The Dirac equation for the E~ particle implies the 
existence of the E+ particle, and no other particle states. 
In this generalized theory the same equation (since in 
the 1X1 representation the extra term in the Dirac 
equation is zero) implies the existence of a number of 
other states which have the correct values of B, S, 73, 
and / and approximately the correct masses to describe 
the particles listed in Table I. The E + similarly leads to 
the corresponding antiparticles. 

For neutral states (^5= — 1) we have, from (2.6), 

B+S=-2Iz=eU*$dV I* (2.11) 

so that B+S has the same sign as e. However, from 
Eq. (2.2), B-{-S is not strictly equal to ± 1 unless ^ is 
an eigenstate of 774. Such is the case for the iVi3*° states, 
but for the n and S° states this is true only in the limit 
Wo —» 0, i.e., in the limit in which mass differences of an 
isospin doublet are neglected. This is in agreement with 
the fact that in the current phenomenological descrip
tion of isospin, such mass differences are in fact neg
lected, the integral values of 2/3 and, consequently, of S, 
being only approximations, valid in this limit. However, 
S + 2 / 3 is required to be strictly equal to the integer 
2Q—B, and this result follows from the definitions (2.5), 
(2.6), and (2.7). If such mass differences are neglected, 
the definitions (2.6) and (2.7) reduce to 73 = \f\*>Y^ with 
Y=e for r = l , Y= — er)5 for T= — 1. 

To examine the values of 5 and 73 when mass differ
ences are not neglected, we note that the neutron wave 
function was given in5 Ref. 2 [IV, Eq. (3.19)] as 

* = -
1 1 -ib 

(2.12) 
{y/V) (3/32-9)1/2l 

I 3 J 

0 0 - 2 0 + 3 = 0 , 775= — 1 , 

a= (m—m^/mo, /3 = — (mn+m)/mo. 

For m 0 « w , the first three components, for which 
774=+ 1, are large compared with the last component, 
for which 774= — 1. The multiplying factor normalizes \p 
according to Eq. (2.2). However, since in this case 
€= + 1 (see Table I) S+B is now 

Y=S+B= (/32+3)/(/32-3), 

the neutron mass being given by 

mn— - W o + ( w 2 - 2 w w o - 2 W ) 1 / 2 . 

5 m in this reference is here replaced by |w, and w0 by — JWQ. 
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For the values of m, w0 chosen in Table I, (S+B)n 

= 1.03. To terms of order (wo/w)2, this may be written 

(5+J5) n = l+3(mn—mv)/m. 

However, mass differences are not accurately described 
at the present level of this classical field theory. 

Similarly, for the E°, which appears in the same 
representation as the other solution of (2.12), 

tnz»=—m>o— (m2—2mmo—2mo2)112, (m=m^~) 

it follows that j#2«l, and S+B, which has the same sign 
as e, is now given by 

Y=S+B=(3+(32)/(3-l32). 

The fourth component of ^(174= — 1) is now large com
pared with the other three. In this case 

Y=S+B= i+(2/3mo2) (ntz--mz°)2, (2.13) 

which again reduces to the correct integer when the 
S~—E° mass difference is neglected. In Table I the 
values listed for 5 are in the limit in which such mass 
differences are neglected. We note how just the right 
states are picked out automatically as having a strange
ness equal to =1=2. 

As noted earlier, the third component h of the isospin 
is given from (2.9) as J (B+S) for charged states and 
— \ (B-\-S) for neutral states. For neutral states, it has 
the values =b | only in the limit in which mass differences 
are neglected. This consequence is borne out by noting 
that, in the 10X10 representation (74774= + 1) for ex
ample, the proton state has six components, three large 
(774=+ 1) and three small (774=-1) [Ref. 2, IV Eq. 
(3.19)]. 

mp-\-m 
~i{mp-\-m) I 
— (mp-\-m) 
i{mp—m) 
(mp—m) 

\ — i(ynp—-w)) 

a 0 + 2 a - 2 / 3 = 0 , 775= + ! , mp=lm(m-Amo)J12, 

P= — (mp+m)/mQf l3+2 = 2(mp+m)/ (mp—m). 

Again, the last three components vanish in the limit 
mo=0. To complete the verification that 1% is indeed the 
third component of the isospin, at least in this limit, we 
find that, if we neglect the three small components of \pp 

and the one small component of \f/n it follows that, on 
examination of the components in this representation, 

* = 

Since also 

REST 
ENERGY 

MEV 

~i—r 

J L 

1/2 

FIG. 2. Calculated properties of rest-energy states of Eq. (1.17) 
for m = 1328 MeV, w0 = 166 MeV. Experimental values for I = i, 
J=i, or f are indicated by dashed lines. For negative energy 
states Q denotes the charge of the antiparticle. 

proton and neutron thus: [cf. Eq. (2.9) with B=l, 
5 = 0 ] 

/ l=i#fo?6, ^2= — * 04 , / 3 = J??5. 

Thus, / i + ^ 2 = i^4(^5—1), and hence gives zero when 
applied to the proton state, and similarly (Ii—il2)^n = 0. 

As shown in Table I, it follows from the above 
analysis that the spins, charges, strangeness, baryon 
number, and isospin of every one of the states that occur 
as solutions of Eq. (1.17) are in agreement with experi
ment. Without any assumption about the values of the 
parameters m, mo, the following relation between the 
masses of these states may be derived directly from the 
table. 

2m^—\-m^=mn+2m^n*
Q. (2.14) 

Experimentally, the left-hand side has the value 3958 
MeV and the right-hand side the value 3974 MeV, an 
agreement of better than 0.5% accuracy. For the par
ticular choice mc2 =1328 MeV, m0c

2= 166 MeV=fwc2 , 
the mass levels are as given in the table, and in Fig. 2. 

The six mass levels are given by the formula 

W/mc2=MSi-S2) 
+ {Zl+ha(S1+S2)J-a*(v-W}11*, (2.15) 

we may write the usual components of the isospin for the 

where Si, S2 are the eigenvalues of or-2 given in Table 
II . The spin of a state is i * ( a + 2 S ) so that for spin-J 
states or* S = 0 or — 2, and for spin-f states <r • S = 1. The 
allowed eigenvalues of (<r«^)2 have been given in Ref. 
2 I I , Table I. 

I t was pointed out in Ref. 1 I I I that a generalization 
of Eq. (1.17) of the form 
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TABLE II. Eigenvalues of a • S and (o1 • ^) 2 . 

Particle Si S2 (o-X)2 

I F o o o 
S° 0 - 2 3 
n - 2 0 3 
p - 2 - 2 4 
iVis*0 1 1 0 
iVi3*+ 1 1 1 

where 0 / are Kemmer operators that commute with the 
7M and /3M, includes all of the states discussed above, but 
also leads to other states of spin | , f, f. The highest 
state to which this leads has a spin § and mass wc2( l+2a), 
i.e., with the choice moc2 = amc2= 166 MeV used in 
Table I this spin-f state lies 166 MeV above the spin-f 
Nn*° state of Table I. There is, in fact, a spin-f state 
iVi5* lying 166 MeV above the observed Nn* resonance, 
although both calculated levels lie 23 MeV below those 
observed. Similar extension to include states of spin up 
to | leads to a spin-J state at tnc2(l+3a), i.e., 166 MeV 
above the § resonance. Experimentally, this energy 
difference is 217 MeV, although the broad width of the 
Nz7* resonance makes this uncertain. Extension of this 
analysis to higher spins would lead to a series of states of 
increasing spin, 166 MeV apart, i.e., a spin-f resonance 
at 1992 MeV, a spin-11/2 resonance at 2158 MeV (see 
TVi* at 2190±25 MeV), a spin-13/2 resonance at 2324 
MeV (cf. Nz* at 2360±25 MeV) etc. These states, and 
the iVi3*° state considered above have rest energies and 
spins 

W=mc2+ (Ja/fi)tnoc2, 

and correspond to the classical result (1.6). However, 
the isospins and strangeness of these states, and of 
lower ones that occur in this generalization, remain to be 
calculated. 

In addition to electromagnetic interactions, which 
would occur in this theory from an interaction of the 
form 

— (ieeo/2c)$yll(l+ri6)\l'All, 

or, in the case of an explicit magnetic moment, 

it is possible to construct invariant interactions of the 
form 

igfWB,, (2.16) 

g ' t f M ^ e t c . , (2.17) 

which, if the B{, B^ are real and the B±, Bu are imagi
nary, do not destroy the conservation of s^ [Eq. (2.1)]. 
From (2.16), for example, one obtains the wave 
equation 

[Y A + (mc/h) - (*&oc/4A) ?MvptiV+igP»B/1'}l' = 0. 

A vector field B^ coupled in this manner would cause 
transitions between charged and neutral states in the 
same representation (since /3M anticommutes with 775), 
but would not couple states with opposite signs of r. In 
the 5X5 representation this interaction would couple 
the E~ only to the 2°, and in the 10X10 representation 
it would couple charged and neutral nucleon and Nn* 
states. No interaction conserving s^ and derived from 
the jp and j3M would couple the S to the other states, 
since they occur in different representations. 

3. BARYONS OF STRANGENESS ± 1 

I t is found that Eq. (1.18) describes only three differ
ent mass levels, and that these states are neutral, with 
zero isospin. 

According to Eq. (1.18), the conserved probability 
current is 

s^ic^rjtmPfrt, (3.1) 

leading to a probability density which is normalizable as 
in Eq. (2.2). 

r = — fs,dV= fy*PatfdV=±l, (3.2) 

since 774^4=^4. For a given state, the sign is unambigu
ously determined. As in the last section, states may be 
characterized by the eigenvalues ± 1 of 74)74. For either 
eigenvalue, and mo<mf, it is found that 

B= U*MdV (3.3) 

has the same sign as the rest energy, and, if \p is nor
malized according to (3.2), | B\ = 1 . We may, therefore, 
interpret B as the baryon number. 

In addition to (3.1) the four-vector 

j^eoc^rnytyzpfjp (3.4) 

is conserved, and we identify it with the charge-current 
density. The electric charge is then given in units of eo 
by 

Q=-iU*vmysMdV. (3.5) 

For an eigenstate of 74)74 this is zero, since 74^4 and 75 
anticommute. The states are therefore characterized by 
74774= ± 1 and by two independently conserved quanti
ties, Q and B, which assume the values 0 and dbl, 
respectively, the sign being that of the rest energy. If, as 
usual, one writes 

it follows that S= — B, B=dzl, for all eigenstates 
of 74)74. 



Q U A N T U M T H E O R Y O F E L E M E N T A R Y P A R T I C L E S B839 

In the rest system, Eq. (1.7) may be written thus: where 

[ - / 3 4 £ + i ? + a - S + p 1 w l > = 0 , (3.6) 
where 

(028,081,012) = iV , (014,024,034) = & , 

7 i = P2or, 7 4 = p 3 , 7 B = — P I , 

-E = IF/w oV, 7] = mr/m o . 

(3.7) 

As before, spin-f states are characterized by cr»S = l, 
and spin-! states by <r«2 = 0 or — 2. 

Equation (3.6) has no solutions in the 1X1 repre
sentation of the Pp. In the 5X5 representation, there is 
only one solution, of spin J, 

= 0,(3.8) 

V 
1 
i 
1 
-iE 

1 
V 

— i 
- 1 
0 

— i 
i 
V 
i 
0 

1 iE] 
- 1 0 
- i 0 

rj 0 

0 n 

f (2-*?)£ ] 
£ 
iE 
E 

U(3-n)(n+l)J 

l F = m o V E = d b w V [ ( l + ^ ) ( l - 3 5 ) / ( l - 2 & ) ] 1 / 2 (3.9) 

and b — rf^^m^/w!. 
This solution occurs both with 74*74= + 1 , r = + 1, and 

with 74)74= — 1, r = — 1 . In either case B = W/\W\. 
Similar solutions occur with the opposite value of Jz. 

In the 10X10 representation there are two solutions 

W=±m'(*l(l+b)(l-3b)(l-4A)/(l--2b)l1ii, 

and 

spin \ , 

W^±.mfc2{\-\-2b)ll\ spin 

(3.10) 

(3.11) 

The six spin states, two signs of W, and two signs of 
74774 correspond to the 24 times the energy occurs in the 
40X40 matrix, which represents the operator of Eq. 
(3.6) in this representation. As before, for normalized 
solutions, B = W/ \ W | . 

Explicitly, the spin-| state is given by 

so that 

i 
1 
0 
1 

— i 
-iE 
0 
0 
0 

— I 

V 

i 
- 1 
0 
1 
0 

-iE 
0 
0 

0 i iE 0 0 
- 1 0 1 0 iE 0 

— i 
- 1 
0 
0 
0 

-iE 
0 

1 

v 
i 
1 
0 
0 
0 
0 

- 1 
— i 

V 

i 
0 
0 
0 

0 
1 

— i 

V 

0 
0 
0 

Gr-2) iH2i*+i£x=o, 
2ty+ 0 7 - 2 ) 0 = 0 , 

-;^+07-2)x+x=o, 
3x+*?\=0, 

(3.13) 

which leads to the eigenvalues (3.10). Spin-f states 
(Jz—h ~~i) a r e characterized by 

^3/2,3/2= 

* 
i\f/ 
0 
0 
i(f> 
0 
X 

0 
0 

^3/2,-1/2— 

vfr 
— i \p 
2$ 
<t> 

— i<f> 
20 
X 

- i x 
2x 
0 

with 
Orfl) iH-«*+*£x=0, 

- #+OH-1 ) *=0 , 
- ; ^H - ( iH - i ) x=o , 

(3.14) 

0 
0 
0 
0 
V 

i 
1 

0 0 1 

0 l 
0 
0 
0 
0 
0 
1 

— i —i 

v - 1 
— 1 rj J 

iE 
0 
0 
0 
1 

— ixf/ 

0 
—uj> 
- 0 

X 
- i x 
—x 
X 

(3.12) 

The three lowest known states4 with B=l, S= — l, 
j = 0 , 0 = 0 are A0 (1115-MeV, spin £) F 0 * (1405 MeV, 
spin ?) F0 3* (1520 MeV, spin f) . If the spin of the F 0 * is 
J, the masses and spins of these states are adequately 
described by the choice mV=1428 MeV, m 0 V=132 
MeV, which fit the A0 and F0*, and lead to a spin-f state 
at 1554 MeV. A prediction of this theory, then, is that 
the F0*, which occurs in the 5X5 representation [Eq. 
(3.9)3 has a spin of \. 

The generalization of Eq. (1.7) to include states of 
spin up to f is 

p 0 A + ^ - i W A , ( 7 M , + 4 0 M / ) ] ^ = O . (3.15) 

The conserved probability current is now 

(3.16) 

leading to a probability density which is normalizable to 
± 1 as before. 

-J**--1-<A*74>74'04^F=±1. (3.17) 

which yields the eigenvalues (3.11). 
States are now characterized by the eigenvalues ± 1 of 
74174*74', and by the eigenvalues ± 1 of 775'. We now find 
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that 

is conserved, so that 

Q=UB+S)+h, 
where 

B+S= 2i [ipwm'yMdV, (3.18) 

h=i I 4<*w#n'(l-m')P*l'dV. (3.19) 

For ft/=0 (so that rn'= — l, 175'=+ 1) Eq. (3.18) re
duces to Eq. (3.5), 7 3 = 0 and the solutions of Eq. (3.15) 
reduce to those already discussed. However, for wave 
functions normalized according to (3.17), we have in 
general I%=±:1 or 0, with £ + 5 = 0 as before. Thus, 
Eq. (3.15) describes states of spin J, f, f, and of isospin 
0 or 1. Detailed properties of these solutions have not 
yet been investigated, but the highest energy level is 
easily seen to be characterized by 2 2 = 2 ' 2 = 2 , o f £ 
= <F- S ' = 2 • S ' = 1, and to have a spin f. To first order 
in by its rest energy is m/c2(l+2b) = 1690 MeV for the 
same values of m' and b as before. The next highest 
observed level F0** is, in fact, at 1680 MeV, but its spin 
is unknown at present. Since Eq. (3.15) yields rest-
energy levels not yet investigated, this identification is 
not certain. If the 2 particle appears at all in this 
theory, the simplest equation which could describe it is 
Eq. (3.15). 

4. K PARTICLES 

Bosons of strangeness ± 1 are described in this theory 
by Eq. (1.19), which in the rest system may be written 
thus: 

^ = { P 8 + | a ( p 8 + W W } * , ' (4.1) 

where we have written 

W=tn"c2E, m0" = W , 

7»=P20', y/=P2v'; i= 1 ,2 ,3 . 

74=P3, 76=—Pi, 7 / = P3/, 7 5 ' = - P i ' . 

On squaring Eq. (4.1) we obtain 

the spin being §#(<r+<r'). Hence, 

W=±fn"c2(l+ayt2 (<r-<r'=l, spin 1), 

W=±m"(?(l-3ayi2 ( < r V = - 3 , spinO). 

We postulate that the charge-current density associated 
with Eq. (1.19) is 

yM= ice^yallid*, (4.3) 

which is conserved. The charge in units of eo is then 

Q=eU*y^dV. (4.4) 

The states may be characterized by the eigenvalues 
± 1 of 747/ or by the eigenvalues ± 1 of 75'. We define 

5= [fytfdV^dzl, (4.5) 

which is found to be normalizable to + 1 for positive 
energy states and to — 1 for negative energy states. We 
choose e in Eq. (4.4) so that, if \j/ is an eigenstate of 
747/, e7474/= + l. This is necessary in order to ensure 
that the electric charge associated with a given state has 
the same sign in the two subspaces 7474' = + 1 and 
7474'= — 1 in which this state occurs. Hence, for either 
eigenvalue of 7474' we have Q=S. If, however, \p is an 
eigenstate of 75', we have 5 = ± 1 as before, since 74, 75' 
commute, but Q=0, since 7 / , 75' anticommute. Thus, if 

Q=iS+it, 
we have 

/8=iS(e74Y4ty=+*)-

I t is not difficult to choose the two parameters m"c2 

= 808 MeV, W V = 166 MeV to fit the masses of the K 
and K* mesons! However, it may be significant that this 
value of W , chosen to give the best fit to these experi
mental masses, is indistinguishable from the value of 
wo, used in the other extended Dirac equation (1.6). In 
addition, the strangeness, spins and conjugate doublet 
structure of the K, K* particles are seen to emerge from 
this analysis. The states 5 = 1 , Iz=%, Q= 1, and the 
states 5 = — 1, I$=— | , Q= — l have also the correct 
spins and masses for the K+, Ki*+, and K~~, Ki*~ states, 
respectively, and the states 5 = 1, 73= — h a n d 5 = — 1, 
/ 3 = | correctly describe the K°, Ki*°. In the classical 
field theory, the twelveK* states of spin 1 (Js=h, 0, —h) 
and the four K states of spin 0 correspond to the sixteen 
components of \f/ in Eq. (4.1). 

5. BOSONS OF ZERO STRANGENESS 

We complete this analysis by examining the eigen-
functions and rest-energy eigenvalues of Eq. (1.20). 
With the notation 

(fe,ftl,£l2) = i S , (^14,̂ 24^34) = fa 

and similarly for /S^/, the equation in the rest system 
may be written 

t J 5 4 E - i j - ( S - S , + ^ ^ , ) > = 0 , (5.1) 
where 

W=2fnQ"'c2E, 7 ? = m ' 7 2 W " . 
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The conserved probability current is now 

and the electric charge-current density is 

i ^= ^ 4 * i j ^ / ( l + i i 5 ' ) M , (5.2) 
with 

^ = 2 / V - l , ifc/=2ft/*-.l, i/B' = i?iVi»8V. 

The electric charge in units of eo is then 

Q = - / ^ / ( l + r / s O f t ^ F . (5.3) 

The solutions are simultaneously characterized by the 
eigenvalues dbl of the commuting operators 774*74' and 
775'. As in Sec. 2, charged states correspond to 775' = + 1 
and neutral states to 775' = — 1. 

In each representation, each solution occurs with both 
signs of the energy and with the same eigenvalues of 
774774' and of 775'. In what follows, we restrict our attention 
to the positive energy solutions, normalized according to 

jP*PtfdV=l, (5.4) 

so that 7)4714= + 1 , 775'= + 1 denotes states of charge +e0, 
and 174174' = — 1,775'=+ 1 states of charge — e0. 

We may define an operator /3$, such that, as with the 
other /?', 

Mm' = m%' = M Vz=2l3^-l,ri4'f35
f+fo'rli'==0. (5.5) 

In the 10X10 representation, as defined by Kemmer, 

. . 1 . . . 

1 

We find that, for any two states \f/+, \p- which occur in 
the same representation with the same rest-energy 
eigenvalue, but with opposite signs of the charge, 

? B V + = * - , M M ^ - H - (5.6) 

Such states are always accompanied by a neutral state 
^o0?5 /= — 1, 774774'= + !) s u c n that, if small components 
are neglected as in Sec. 2, 

/34 ty+=fyo, frtyo =~i\f/+. (5.7) 
Hence 

04'0Bty-= #0 , fo%'fo = - # - • (5.8) 

The masses of the neutral and charged states which 

correspond in this manner always differ by terms of 
order (m0'"/m'")2. 

We now define the operators 

/ 2 = ( l / v 2 ) [ / 5 / - / 3 4 W - ^ 4 / ] , (5.9) 

Using (5.5) and other properties of the /3 algebra it may 
be shown that 

I X I = ; I , (5.10) 

i.e., that the operators (5.9) satisfy the commutation 
relations for angular momentum. However, they are not 
related to the spin; for wave functions normalized 
according to (5.4) the charge Q [Eq. (5.3)2 *s given by 

Q=h, (5.11) 

where 73 has the eigenvalues 0, ± 1 . To further verify 
that I is indeed the isospin we note that, in the space of 
the wave functions 

hAo 

as related by Eqs. (5.6), (5.7), and (5.8), we have 

*?4 

0 
i 
0 

1 
0 
0 

-i 0 
0 0 
0 0. 

0 0 
1 0 
0 - 1 

fc'= 

mf= 

ro 0 i) 
0 0 0 
.1 0 o. 
ri 0 
0 - 1 
0 0 

°1 
0 

so that, from (5.9), 

h= 
1 

— 
v2 

"o 
1 

,0 

1 0̂  

0 1 

1 0„ 

1 

v5 

0 

i 

0 

—i 

0 

i 

0 

—i 

oj 

h= 

> 

r l 

0 

0 

0 

0 

0 

0 

0 

- 1 

the familiar matrices which represent isospin unity. 
Quantum numbers which characterize the eigenstates 

of Eq. (5.1) in the rest system are shown in Table I I I . 
States of isospin unity, the components of which are 
linked together by Eqs. (5.7) and (5.8), occur only in 
the 10X10 representation of the /? / [[three times (with 
spin 0, 1, 2) in the 10X10 representation of the /5M, and 
once (with spin 1) in the 5X5 representation of the ftj. 
In each case the neutral component is slightly heavier 
than the charged components. Each neutral component 
of a state with 7 = 1 is accompanied in another repre
sentation by a state 7 = 0 with the same mass and spin 
but with the opposite sign of 774*74'. At least in the case of 
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TABLE III . Eigenstates of Eq. (5.1) for bosons with S~0. The bracketed levels are components of isospin triplets according to Eqs. 
(5.7) and (5.8). The parameters m'"9 mo'"— am,'" have been chosen as 1041 and 106 MeV, respectively, i.e., a = 0.1. 

Representations 
ft. ft/ Vb {W/m'"cY 

Possible 
identifi

er (MeV) cation 

W (MeV) 
experi
ment* 

1X1 1 1041 

5X5 1 1 0 
- 1 - 1 1 
- 1 1 0 

10X10 1 1 1 
- 1 1 1 

1 - 1 1 
- 1 - 1 0 

10X10 1X1 1 - 1 1 

5X5 - 1 - 1 2 
1 1 1 

~ 1 1 1 
- 1 - 1 1 
- 1 - 1 0 

10X10 1 1 2 
- 1 1 2 

1 - 1 2 
- 1 - 1 1 

1 1 1 
- 1 1 1 

1 - 1 1 
1 1 0 

- 1 1 0 
1 - 1 0 

+ 
0 
0 

+ 
0 
— 
0 

-

0 

+ 0 
0 
0 

+ 
0 
_ 
0 

+ 0 
— 

+ 0 

a Data from M. Roos, Phys. Letters 8, 1 (1964) and recent experiments. 

(p.co), a n d wi th less ce r t a in ty in the cases (f rt), (Xijtf) 

1 
l - 4 a 2 

( l - 6 a ) ( l + 2 a ) ( l - 4 a ) - * 

( l - 4 a ) ( H - 2 a ) ( l - 2 a ) " 1 

l~4a2 

( l - 4 a ) ( l + 2 a ) ( l - 2 a ) - 1 

( l - 6 a ) ( l + 2 a ) ( l - 4 ^ ) - 1 

1 

(l+2a)« 
1 

( l+2a) 2 ( l -4a ) 
( l - 4 a ) ( l - 4 a 2 ) 
( l -4a ) ( l - fo ) ( l+2f l0 

l + 4 a 
( l+2a)2 

l + 4 a 
( l+2a ) 2 ( l -4a ) 
( l - 4 a ) 2 ( l + 2 a ) ( l - 2 a ) - 1 

( l - 4 a ) ( l - 4 a 2 ) 
( l - 4 ^ ) 2 ( l + 2 a ) ( l - 2 a ) - 1 

l - 8 a 
( l - 4 a ) ( l - 6 a ) ( l + 2 a ) 

l - 8 a 

1041 
1019 
926 

986] 
1019} 
986J 
926 

1041 

1253 
1041 
965 
785 
548 

12351 
1253 \ 
1235J 
965 
7591 
785} 
759J 
449] 
549} 
449 J 

a round 1 BeV, which do n o t pc 

4> 
X 

X 

X 

f 

X 
0) 

V 

A,B 

X 

P 

>ssess neul 

1019 
922 

1000 

922 

1253 

958 
783 
548 

1220 

958 
757 

754, 770 

tral counter-
and (B,f) there is some evidence to support this con
clusion. In Table III and Fig. 3, the bare masses pre
dicted by the theory for the various states are shown for 
the choice m= 1040 MeV, a=nt0'"/ni'"=0.1. The agree
ment with observation is much better than one would 
expect, not only with respect to the structure of the 
states, the various spin values and the automatic 
grouping of most of the levels into states with 1=0 and 
with 1=1 , but also with respect to the mass levels 
themselves. 

A state of J =2, S=0,1=1 is predicted around 1.24 
BeV (the B IT—CO resonance ?) in addition to the ob
served 1=0 f state at this energy. A J=0, S=0} 1= 1 
state also appears around 450 MeV, together with 1=0 
states at 965 MeV (spin 1) and 926 MeV (spin 0). 
(03 ?) Each of these latter resonances exists in two states 
with 77417/= ± 1 according to this picture. There also 
exists in this theory charged resonances of spin 0 and 1 

TABLE IV. Values of S, I, J allowed by Eq. (1.11), and values of 
m, Wo used in the text. 

parts in the sense of Eqs. (5.7) and (5.8). 
To terms of first order in a-

Table III that 

: m^,r/w!" we note from 

Equation 
number 

mcl m§cl 

(MeV) (MeV) 

(1.17) \v„ 
(1.18) ft,, 
(1.19) \y,v 
(1.20) ft,, ft./ 

0, ± 2 
dbl 
±1 
0 

x 2. 
2> 2 

1 0 ,1 
0,1 

1328 166 
1428 132 

166 
106 

mu=mp, mfjrm0)=2m(f)f m<ft+m1l
:=2mu. 

Experimentally, the last two equations are accurate to 
better than 0.3%, since these states form part of the 
equally spaced 1=0 series / , <£, co, 77, COABC. 

6. SUMMARY 

The values of S, I, J to which the four equations 
(1.17), (1.18), (1.19), and (1.20) give rise are sum
marized in Table IV. In each case S+2I+2J is an even 
integer, a result which is valid for every particle and 
resonance state so far observed. The values of m and mo 
chosen in the text to fit the experimental mass values are 
also listed in Table IV. It is a weakness of this theory 
that these values differ from one equation to the next. 

Each equation gives rise to two independently con
served currents, and the particular linear combination 
of these which is identified with the electric current is 
arbitrary. The electric charge is related to B, S, and 7̂  
in the usual way. The baryon number B for the fermion 
states [Eqs. (2.5) and (3.3)'] is always conserved for 
eigenstates of 74̂ 4 and is equal to + 1 for positive-energy 
states and — 1 for negative-energy states. The strange
ness and isospin are separately conserved only in the 
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FIG. 3. Mass, spin, and charge eigenstates in different repre
sentations of the generalized Kemmer equation for bosons of zero 
strangeness (full lines) and experimental values (dashed lines). 
The 7r and ABC states do not appear in this analysis. Data from 
Ref. 4. 

limit in which mass differences are neglected, although 
JS+/3 is exactly conserved. The values of S, Iz9 J, B, 
which are derived for the various states described by the 
four equations are all correct with the possible excep
tions of F0* (spin ^) and the x—co resonance ( /= 2), and 
Xi (7=1). Extensions of these equations to describe 
higher values of S, I, and / have so far led to the correct 
mass and spin for the Nn* resonance, and to the correct 
mass for the F0**, with a prediction that the spin of 
this state is f. 

The spins of the individual states appearing in this 
analysis are given in Eq. (1.15) as the sum of two 

operators, one of which is the spin operator of the 
unmodified Dirac or Kemmer equation. Thus, the states 
described by Eq. (1.17) and analyzed in Sec. 2 may be 
denoted by (|,1) or (^,0) the first number referring to 
the usual spin, and the second to the additional spin 
component which is the basis of this theory. We notice 
that particles of even strangeness are described when 
this additional spin component is integral, and particles 
of odd strangeness when it is half-integral. While it is 
generally required in an interaction that the total spin 
should be conserved, reactions in which the sum of the 
components of each spin should be separately conserved 
would allow particles of type (J,l) or (J,0) to transform 
into states of type (1,J) or (0,J) only by the emission or 
absorption of states of type (i,J). Similarly, states of 
tyPe (ijl) etc., could then transform into themselves, or 
other states of the same type, only by the emission or 
absorption of states of type (1,1) etc., as described by 
Eq. (1.20). When supplemented by the requirements of 
charge and baryon number conservation, this ap
proximate rule would lead to the conservation of 
strangeness in the production of the bosons described by 
Eqs. (1.19) and (1.20) by interactions between the 
fermions described by Eqs. (1.17) and (1.18). 

There is ample evidence in the literature that it is 
relatively easy to invent schemes which yield the correct 
values for the quantum numbers and mass values for a 
number of elementary particle states. The theory de
scribed in this paper differs from most of these attempts 
in that it is related through the correspondence principle 
to the classical equations of motion of a spinning point-
particle, equations which one has no hesitation in using 
to describe the motion of an elementary particle under 
conditions in which quantum effects may be neglected. 
In addition, the existence of quantum numbers which 
may possibly be identified with isospin and strangeness 
is deduced from the field equations, these dynamical 
variables assuming their correct integral or half-integral 
values in the limit in which mass differences are neg
lected. However, it has yet to be shown that S and I as 
they emerge from these equations are in fact conserved 
when interactions which are known experimentally to 
conserve them are introduced into the field equations, 
or that these encouraging consequences of a classical 
field theory will stand the test of second quantization. 


